Continuous time random walk and parametric subordination in fractional diffusion
نویسندگان
چکیده
The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete operational time. In the continuum limit we obtain a (generally non-Markovian) diffusion process governed by a space-time fractional diffusion equation. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. By what we call parametric subordination, applied to a combination of a Markov process with a positively oriented Lévy process, we generate and display sample paths for some special cases.
منابع مشابه
Some recent advances in theory and simulation of fractional diffusion processes
To offer a view into the rapidly developing theory of fractional diffusion processes we describe in some detail three topics of present interest: (i) the well-scaled passage to the limit from continuous time random walk under power law assumptions to space-time fractional diffusion, (ii) the asymptotic universality of the Mittag-Leffler waiting time law in time-fractional processes, (iii) our m...
متن کاملGeneralized Continuous - Time Random Walks ( Ctrw ) , Subordination by Hitting times and Fractional Dynamics ∗
Functional limit theorem for continuous-time random walks (CTRW) are found in general case of dependent waiting times and jump sizes that are also position dependent. The limiting anomalous diffusion is described in terms of fractional dynamics. Probabilistic interpretation of generalized fractional evolution is given in terms of the random time change (subordination) by means of hitting times ...
متن کاملWalks (ctrw), Subordination by Hitting times and Fractional Dynamics
Functional limit theorem for continuous-time random walks (CTRW) are found in general case of dependent waiting times and jump sizes that are also position dependent. The limiting anomalous diffusion is described in terms of fractional dynamics. Probabilistic interpretation of generalized fractional evolution is given in terms of the random time change (subordination) by means of hitting times ...
متن کاملOvershooting and undershooting subordination scenario for fractional two-power-law relaxation responses.
In this paper, we propose a transparent subordination approach to anomalous diffusion processes underlying the nonexponential relaxation. We investigate properties of a coupled continuous-time random walk that follows from modeling the occurrence of jumps with compound counting processes. As a result, two different diffusion processes corresponding to over- and undershooting operational times, ...
متن کاملDistributed-order diffusion equations and multifractality: Models and solutions.
We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007